METRIC SPACES: FINAL EXAM 2012

DOCENT: A. V. KISELEV

Evaluation: $\min\left(100\%, \max\left(5 \operatorname{prb} \times 20\% \cdot \begin{bmatrix} 1.00\\ 1.15^{\text{top}} \end{bmatrix}\right)\right)$.

Problem 1. Let (\mathfrak{X}, d) be a non-empty metric space, r and s be two positive radii, and $B_r^d(x) = B_s^d(y)$ for some $x, y \in \mathfrak{X}$.

- Is it true that r = s?
- Is it true that x = y?

Problem 2. Let (\mathfrak{X}, d) be a non-empty metric space. By definition, for all $x, y \in \mathfrak{X}$ put

$$d_1: \mathcal{X} \times \mathcal{X} \longmapsto [0, 1),$$
 $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)},$ and $d_2: \mathcal{X} \times \mathcal{X} \longmapsto [0, 1],$ $d_2(x, y) = \min(1, d(x, y)).$

Show that the functions d_1 and d_2 are also metrics on \mathfrak{X} .

Problem 3. Let $A, B \subseteq \mathbb{E}^n$ be two subsets and consider their sum

$$A + B = \{x + y \mid x \in A, \ y \in B\}.$$

Suppose that A is open and B is closed.

- Is it true that A + B is open?
- Is it true that A + B is closed?

Problem 4. Let (\mathfrak{X}, d) be a metric space and $\{A_i \mid i \in \mathcal{I}\}$ be a family of connected subsets $A_i \subseteq \mathfrak{X}$ such that $A_i \cap A_j \neq \emptyset$ for all indexes $i, j \in \mathcal{I}$. Prove that the union $A = \bigcup_{i \in \mathcal{I}} A_i$ is connected.

Problem 5. Prove that the algebraic equation $7x = 1 - x^5$ has a unique solution in the segment $[0,1] \subset \mathbb{R}$.